Archives of Clinical Infectious Diseases

Published by: Kowsar

Study of Tissue Orientation and Parasite Load in Various Tissues and Blood in an Experimental Mouse Model of Acute Toxoplasmosis

Sina Sekandarpour 1 , 2 , Hadi Mirahmadi 1 , 2 , * , Mahdi Mohammadi 3 , 4 , Jalal Zaman 5 , Ramin Saravani 6 , 7 and Mohammad Mousavi 2
Authors Information
1 Infectious Diseases and Tropical Medicine Research Center, Tubercluosis Institute, Zahedan University of Medical Sciences, Zahedan, IR Iran
2 Department of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran
3 Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
4 Department of Biostatistics and Epidemiology, School of Health, Zahedan University of Medical Sciences, Zahedan, IR Iran
5 Orumiyeh Military Hospital, Health Administration of Army (NEZAJA), Tehran, Iran
6 Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
7 Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran
Article information
  • Archives of Clinical Infectious Diseases: October 2018, 13 (5); e13744
  • Published Online: January 29, 2018
  • Article Type: Research Article
  • Received: September 24, 2016
  • Revised: May 20, 2017
  • Accepted: September 19, 2017
  • DOI: 10.5812/archcid.13744

To Cite: Sekandarpour S, Mirahmadi H, Mohammadi M, Zaman J, Saravani R, et al. Study of Tissue Orientation and Parasite Load in Various Tissues and Blood in an Experimental Mouse Model of Acute Toxoplasmosis, Arch Clin Infect Dis. 2018 ; 13(5):e13744. doi: 10.5812/archcid.13744.

Abstract
Copyright © 2017, Archives of Clinical Infectious Diseases. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnotes
References
  • 1. Ramakrishnan S, Docampo MD, MacRae JI, Ralton JE, Rupasinghe T, McConville MJ, et al. The intracellular parasite Toxoplasma gondii depends on the synthesis of long-chain and very long-chain unsaturated fatty acids not supplied by the host cell. Mol Microbiol. 2015;97(1):64-76. doi: 10.1111/mmi.13010. [PubMed: 25825226].
  • 2. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet. 2004;363(9425):1965-76. doi: 10.1016/S0140-6736(04)16412-X. [PubMed: 15194258].
  • 3. Weiss LM, Dubey JP. Toxoplasmosis: A history of clinical observations. Int J Parasitol. 2009;39(8):895-901. doi: 10.1016/j.ijpara.2009.02.004. [PubMed: 19217908].
  • 4. Dubey JP. Advances in the life cycle of Toxoplasma gondii. Int J Parasitol. 1998;28(7):1019-24. [PubMed: 9724872].
  • 5. Savina MA, Zasukhin DN. [Duration of persistence of toxoplasma of a low virulent strain in different organs and tissues of white mice]. Med Parazitol (Mosk). 1968;37(1):69-73. [PubMed: 5734368].
  • 6. Chirch LM, Luft BJ. Cerebral toxoplasmosis in AIDS. Handb Clin Neurol. 2007;85:147-58. doi: 10.1016/S0072-9752(07)85011-1. [PubMed: 18808982].
  • 7. Walker-Smith J, Andrews J. Alpha-1-antitrypsin, autism, and coeliac disease. Lancet. 1972;2(7782):883-4. [PubMed: 4116595].
  • 8. Dadimoghaddam Y, Daryani A, Sharif M, Ahmadpour E, Hossienikhah Z. Tissue tropism and parasite burden of Toxoplasma gondii RH strain in experimentally infected mice. Asian Pac J Trop Med. 2014;7(7):521-4. doi: 10.1016/S1995-7645(14)60087-0. [PubMed: 25063280].
  • 9. Derouin F, Mazeron MC, Garin YJ. Comparative study of tissue culture and mouse inoculation methods for demonstration of Toxoplasma gondii. J Clin Microbiol. 1987;25(9):1597-600. [PubMed: 3308946].
  • 10. Zenner L, Darcy F, Capron A, Cesbron-Delauw MF. Toxoplasma gondii: kinetics of the dissemination in the host tissues during the acute phase of infection of mice and rats. Exp Parasitol. 1998;90(1):86-94. doi: 10.1006/expr.1998.4301. [PubMed: 9709034].
  • 11. Reischl U, Bretagne S, Kruger D, Ernault P, Costa JM. Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect Dis. 2003;3:7. [PubMed: 12729464].
  • 12. Lin MH, Chen TC, Kuo TT, Tseng CC, Tseng CP. Real-time PCR for quantitative detection of Toxoplasma gondii. J Clin Microbiol. 2000;38(11):4121-5. [PubMed: 11060078].
  • 13. Palos Ladeiro M, Bigot-Clivot A, Aubert D, Villena I, Geffard A. Assessment of Toxoplasma gondii levels in zebra mussel (Dreissena polymorpha) by real-time PCR: an organotropism study. Environ Sci Pollut Res Int. 2015;22(18):13693-701. doi: 10.1007/s11356-015-4296-y. [PubMed: 25772876].
  • 14. Wahab T, Edvinsson B, Palm D, Lindh J. Comparison of the AF146527 and B1 repeated elements, two real-time PCR targets used for detection of Toxoplasma gondii. J Clin Microbiol. 2010;48(2):591-2. doi: 10.1128/JCM.01113-09. [PubMed: 19940050].
  • 15. Djurkovic-Djakovic O, Djokic V, Vujanic M, Zivkovic T, Bobic B, Nikolic A, et al. Kinetics of parasite burdens in blood and tissues during murine toxoplasmosis. Exp Parasitol. 2012;131(3):372-6. doi: 10.1016/j.exppara.2012.05.006. [PubMed: 22613495].
  • 16. Rahumatullah A, Khoo BY, Noordin R. Development of triplex real-time PCR and detection of Toxoplasma gondii DNA in infected mice tissues and spiked human samples. Trop Biomed. 2015;32(2):376-85. [PubMed: 26691266].
  • 17. Bell AS, Ranford-Cartwright LC. Real-time quantitative PCR in parasitology. Trends Parasitol. 2002;18(8):337-42. [PubMed: 12380021].
  • 18. Romand S, Chosson M, Franck J, Wallon M, Kieffer F, Kaiser K, et al. Usefulness of quantitative polymerase chain reaction in amniotic fluid as early prognostic marker of fetal infection with Toxoplasma gondii. Am J Obstet Gynecol. 2004;190(3):797-802. doi: 10.1016/j.ajog.2003.09.039. [PubMed: 15042017].
  • 19. Steeples LR, Guiver M, Jones NP. Real-time PCR using the 529 bp repeat element for the diagnosis of atypical ocular toxoplasmosis. Br J Ophthalmol. 2016;100(2):200-3. doi: 10.1136/bjophthalmol-2015-306801. [PubMed: 26174811].
  • 20. Jurankova J, Opsteegh M, Neumayerova H, Kovarcik K, Frencova A, Balaz V, et al. Quantification of Toxoplasma gondii in tissue samples of experimentally infected goats by magnetic capture and real-time PCR. Vet Parasitol. 2013;193(1-3):95-9. doi: 10.1016/j.vetpar.2012.11.016. [PubMed: 23219045].
  • 21. Aigner CP, Silva AV, Sandrini F, Osorio Pde S, Poiares L, Largura A. Real-time PCR-based quantification of Toxoplasma gondii in tissue samples of serologically positive outdoor chickens. Mem Inst Oswaldo Cruz. 2010;105(7):935-7. [PubMed: 21120368].
  • 22. Derouin F, Garin YJ. Toxoplasma gondii: blood and tissue kinetics during acute and chronic infections in mice. Exp Parasitol. 1991;73(4):460-8. [PubMed: 1959573].
  • 23. Jauregui LH, Higgins J, Zarlenga D, Dubey JP, Lunney JK. Development of a real-time PCR assay for detection of Toxoplasma gondii in pig and mouse tissues. J Clin Microbiol. 2001;39(6):2065-71. doi: 10.1128/JCM.39.6.2065-2071.2001. [PubMed: 11376036].
  • 24. Zenner L, Foulet A, Caudrelier Y, Darcy F, Gosselin B, Capron A, et al. Infection with Toxoplasma gondii RH and Prugniaud strains in mice, rats and nude rats: kinetics of infection in blood and tissues related to pathology in acute and chronic infection. Pathol Res Pract. 1999;195(7):475-85. doi: 10.1016/S0344-0338(99)80051-X. [PubMed: 10448664].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments