Archives of Clinical Infectious Diseases

Published by: Kowsar

Lopinavir; A Potent Drug against Coronavirus Infection: Insight from Molecular Docking Study

Mohammad Reza Dayer 1 , * , Sara Taleb-Gassabi 1 and Mohammad Saaid Dayer 2
Authors Information
1 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, IR Iran
2 Department of Parasitology and Medical Entomology, Tarbiat Modares University, Tehran
Article information
  • Archives of Clinical Infectious Diseases: October 2017, 12 (4); e13823
  • Published Online: September 23, 2017
  • Article Type: Research Article
  • Received: May 7, 2016
  • Revised: May 22, 2017
  • Accepted: September 19, 2017
  • DOI: 10.5812/archcid.13823

To Cite: Dayer M R, Taleb-Gassabi S, Dayer M S. Lopinavir; A Potent Drug against Coronavirus Infection: Insight from Molecular Docking Study, Arch Clin Infect Dis. 2017 ;12(4):e13823. doi: 10.5812/archcid.13823.

Abstract
Copyright © 2017, Archives of Clinical Infectious Diseases. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
References
  • 1. Adedeji AO, Sarafianos SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol. 2014;8:45-53. doi: 10.1016/j.coviro.2014.06.002. [PubMed: 24997250].
  • 2. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300(5624):1394-9. doi: 10.1126/science.1085952. [PubMed: 12730500].
  • 3. Berger A, Drosten C, Doerr HW, Sturmer M, Preiser W. Severe acute respiratory syndrome (SARS)--paradigm of an emerging viral infection. J Clin Virol. 2004;29(1):13-22. [PubMed: 14675864].
  • 4. Liang W, McLaws ML, Liu M, Mi J, Chan DK. Hindsight: a re-analysis of the severe acute respiratory syndrome outbreak in Beijing. Public Health. 2007;121(10):725-33. doi: 10.1016/j.puhe.2007.02.023. [PubMed: 17555781].
  • 5. Shigeta S, Yamase T. Current status of anti-SARS agents. Antivir Chem Chemother. 2005;16(1):23-31. doi: 10.1177/095632020501600103. [PubMed: 15739619].
  • 6. Cheng PK, Wong DA, Tong LK, Ip SM, Lo AC, Lau CS, et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004;363(9422):1699-700. doi: 10.1016/S0140-6736(04)16255-7. [PubMed: 15158632].
  • 7. Dwosh HA, Hong HH, Austgarden D, Herman S, Schabas R. Identification and containment of an outbreak of SARS in a community hospital. Can Med Assoc J. 2003;168(11):1415-20.
  • 8. Zhang XW, Yap YL. Exploring the binding mechanism of the main proteinase in SARS-associated coronavirus and its implication to anti-SARS drug design. Bioorg Med Chem. 2004;12(9):2219-23. doi: 10.1016/j.bmc.2004.02.015. [PubMed: 15080921].
  • 9. Groneberg DA, Hilgenfeld R, Zabel P. Molecular mechanisms of severe acute respiratory syndrome (SARS). Respir Res. 2005;6:8. doi: 10.1186/1465-9921-6-8. [PubMed: 15661082].
  • 10. Lin PY, Chou CY, Chang HC, Hsu WC, Chang GG. Correlation between dissociation and catalysis of SARS-CoV main protease. Arch Biochem Biophys. 2008;472(1):34-42. doi: 10.1016/j.abb.2008.01.023. [PubMed: 18275836].
  • 11. Jacobs J, Grum-Tokars V, Zhou Y, Turlington M, Saldanha SA, Chase P, et al. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J Med Chem. 2013;56(2):534-46. doi: 10.1021/jm301580n. [PubMed: 23231439].
  • 12. Fan K, Wei P, Feng Q, Chen S, Huang C, Ma L, et al. Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem. 2004;279(3):1637-42.
  • 13. Huang C, Wei P, Fan K, Liu Y, Lai L. 3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism. Biochemistry. 2004;43(15):4568-74. doi: 10.1021/bi036022q. [PubMed: 15078103].
  • 14. Lin CW, Tsai CH, Tsai FJ, Chen PJ, Lai CC, Wan L, et al. Characterization of trans- and cis-cleavage activity of the SARS coronavirus 3CLpro protease: basis for the in vitro screening of anti-SARS drugs. FEBS Lett. 2004;574(1-3):131-7. doi: 10.1016/j.febslet.2004.08.017. [PubMed: 15358553].
  • 15. Ziebuhr J. Molecular biology of severe acute respiratory syndrome coronavirus. Curr Opin Microbiol. 2004;7(4):412-9. doi: 10.1016/j.mib.2004.06.007. [PubMed: 15358261].
  • 16. Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J. 2002;21(13):3213-24. doi: 10.1093/emboj/cdf327. [PubMed: 12093723].
  • 17. Bacha U, Barrila J, Velazquez-Campoy A, Leavitt SA, Freire E. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry. 2004;43(17):4906-12. doi: 10.1021/bi0361766. [PubMed: 15109248].
  • 18. Zhang XW, Yap YL. Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg Med Chem. 2004;12(10):2517-21. doi: 10.1016/j.bmc.2004.03.035. [PubMed: 15110833].
  • 19. Chan KS, Lai ST, Chu CM, Tsui E, Tam CY, Wong MML, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J. 2003.
  • 20. Fan K, Ma L, Han X, Liang H, Wei P, Liu Y, et al. The substrate specificity of SARS coronavirus 3C-like proteinase. Biochem Biophys Res Commun. 2005;329(3):934-40. doi: 10.1016/j.bbrc.2005.02.061. [PubMed: 15752746].
  • 21. Ahn TY, Kuo CJ, Liu HG, Ha DC, Liang PH, Jung YS. Synthesis and Evaluation of Benzoquinolinone Derivatives as SARS-CoV 3CL Protease Inhibitors. Bull Korean Chem Soc. 2010;31(1):87-91. doi: 10.5012/bkcs.2010.31.01.087.
  • 22. Liang PH. Characterization and inhibition of SARS-coronavirus main protease. Curr Top Med Chem. 2006;6(4):361-76. [PubMed: 16611148].
  • 23. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003;300(5626):1763-7. doi: 10.1126/science.1085658. [PubMed: 12746549].
  • 24. Yang H, Yang M, Ding Y, Liu Y, Lou Z, Zhou Z, et al. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A. 2003;100(23):13190-5. doi: 10.1073/pnas.1835675100. [PubMed: 14585926].
  • 25. Zhao Q, Weber E, Yang H. Recent developments on coronavirus main protease/3C like protease inhibitors. Recent Pat Antiinfect Drug Discov. 2013;8(2):150-6. [PubMed: 23879823].
  • 26. Kim Y, Lovell S, Tiew KC, Mandadapu SR, Alliston KR, Battaile KP, et al. Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses. J Virol. 2012;86(21):11754-62. doi: 10.1128/JVI.01348-12. [PubMed: 22915796].
  • 27. Brik A, Wong CH. HIV-1 protease: mechanism and drug discovery. Org Biomol Chem. 2003;1(1):5-14. [PubMed: 12929379].
  • 28. Thompson MA. Molecular docking using ArgusLab, an efficient shape-based search algorithm and the AScore scoring function. ACS meeting. Philadelphia. 2004. 42 p.
  • 29. Mukherjee P, Shah F, Desai P, Avery M. Inhibitors of SARS-3CLpro: virtual screening, biological evaluation, and molecular dynamics simulation studies. J Chem Inf Model. 2011;51(6):1376-92. doi: 10.1021/ci1004916. [PubMed: 21604711].
  • 30. Dayer MR, Ghayour O, Dayer MS. Mechanism of the bell-shaped profile of ribonuclease a activity: molecular dynamic approach. Protein J. 2012;31(7):573-9. doi: 10.1007/s10930-012-9435-4. [PubMed: 22851207].
  • 31. Chang CK, Jeyachandran S, Hu NJ, Liu CL, Lin SY, Wang YS, et al. Structure-based virtual screening and experimental validation of the discovery of inhibitors targeted towards the human coronavirus nucleocapsid protein. Mol Biosyst. 2016;12(1):59-66. doi: 10.1039/c5mb00582e. [PubMed: 26542199].
  • 32. Peters HL, Ku TC, Seley-Radtke KL. Flexibility as a Strategy in Nucleoside Antiviral Drug Design. Curr Med Chem. 2015;22(34):3910-21. [PubMed: 26282942].
  • 33. Gross AE, Bryson ML. Oral Ribavirin for the Treatment of Noninfluenza Respiratory Viral Infections: A Systematic Review. Ann Pharmacother. 2015;49(10):1125-35. doi: 10.1177/1060028015597449. [PubMed: 26228937].
  • 34. Kim Y, Shivanna V, Narayanan S, Prior AM, Weerasekara S, Hua DH, et al. Broad-spectrum inhibitors against 3C-like proteases of feline coronaviruses and feline caliciviruses. J Virol. 2015;89(9):4942-50. doi: 10.1128/JVI.03688-14. [PubMed: 25694593].
  • 35. Berry M, Fielding BC, Gamieldien J. Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study. Viruses. 2015;7(12):6642-60. doi: 10.3390/v7122963. [PubMed: 26694449].
  • 36. St John SE, Therkelsen MD, Nyalapatla PR, Osswald HL, Ghosh AK, Mesecar AD. X-ray structure and inhibition of the feline infectious peritonitis virus 3C-like protease: Structural implications for drug design. Bioorg Med Chem Lett. 2015;25(22):5072-7. doi: 10.1016/j.bmcl.2015.10.023. [PubMed: 26592814].
  • 37. Zhao Q, Weber E, Yang H. Drug targets for rational design against emerging coronaviruses. Infect Disord Drug Targets. 2013;13(2):116-27. [PubMed: 23895136].
  • 38. Prior AM, Kim Y, Weerasekara S, Moroze M, Alliston KR, Uy RA, et al. Design, synthesis, and bioevaluation of viral 3C and 3C-like protease inhibitors. Bioorg Med Chem Lett. 2013;23(23):6317-20. doi: 10.1016/j.bmcl.2013.09.070. [PubMed: 24125888].
  • 39. Chu CM. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-6. doi: 10.1136/thorax.2003.012658.
  • 40. Yamamoto N, Yang R, Yoshinaka Y, Amari S, Nakano T, Cinatl J, et al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun. 2004;318(3):719-25. doi: 10.1016/j.bbrc.2004.04.083. [PubMed: 15144898].
  • 41. Peters HL, Jochmans D, de Wilde AH, Posthuma CC, Snijder EJ, Neyts J, et al. Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorg Med Chem Lett. 2015;25(15):2923-6. doi: 10.1016/j.bmcl.2015.05.039. [PubMed: 26048809].
  • 42. Dayer MR, Dayer MS, Ghayour O. Dynamic behavior of rat phosphoenolpyruvate carboxykinase inhibitors: new mechanism for enzyme inhibition. Protein J. 2013;32(4):253-8. doi: 10.1007/s10930-013-9481-6. [PubMed: 23532540].
  • 43. Nagel ZD, Meadows CW, Dong M, Bahnson BJ, Klinman JP. Active site hydrophobic residues impact hydrogen tunneling differently in a thermophilic alcohol dehydrogenase at optimal versus nonoptimal temperatures. Biochemistry. 2012;51(20):4147-56.
  • 44. Momattin H, Mohammed K, Zumla A, Memish ZA, Al-Tawfiq JA. Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)–possible lessons from a systematic review of SARS-CoV therapy. Int J Infect Dis. 2013;17(10):e792-8.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments