Archives of Clinical Infectious Diseases

Published by: Kowsar

Overview Perspective of Bacterial Strategies of Resistance to Biocides and Antibiotics

Masoumeh Navidinia 1 , * and Mehdi Goudarzi 2
Authors Information
1 Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • Archives of Clinical Infectious Diseases: April 30, 2019, 14 (2); e65744
  • Published Online: March 12, 2019
  • Article Type: Review Article
  • Received: December 31, 2017
  • Revised: September 1, 2018
  • Accepted: September 18, 2018
  • DOI: 10.5812/archcid.65744

To Cite: Navidinia M, Goudarzi M. Overview Perspective of Bacterial Strategies of Resistance to Biocides and Antibiotics, Arch Clin Infect Dis. 2019 ; 14(2):e65744. doi: 10.5812/archcid.65744.

Abstract
Copyright © 2019, Archives of Clinical Infectious Diseases. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. How Can Bacteria Become Resistant to Biocides?
2. How Can Bacteria Become Resistant to Antibiotics?
3. Biocide-Antibiotic Cross-Resistance
4. Conclusions
Footnotes
References
  • 1. Poole K. Mechanisms of bacterial biocide and antibiotic resistance. Symp Ser Soc Appl Microbiol. 2002;(31):55S-64S. doi: 10.1046/j.1365-2672.92.5s1.8.x. [PubMed: 12481829].
  • 2. Singer H, Jaus S, Hanke I, Luck A, Hollender J, Alder AC. Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water. Environ Pollut. 2010;158(10):3054-64. doi: 10.1016/j.envpol.2010.06.013. [PubMed: 20663596].
  • 3. Ashraf MA, Ullah S, Ahmad I, Qureshi AK, Balkhair KS, Abdur Rehman M. Green biocides, a promising technology: Current and future applications to industry and industrial processes. J Sci Food Agric. 2014;94(3):388-403. doi: 10.1002/jsfa.6371. [PubMed: 23983055].
  • 4. Mavri A, Smole Mozina S. Development of antimicrobial resistance in Campylobacter jejuni and Campylobacter coli adapted to biocides. Int J Food Microbiol. 2013;160(3):304-12. doi: 10.1016/j.ijfoodmicro.2012.11.006. [PubMed: 23290239].
  • 5. Braoudaki M, Hilton AC. Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. Int J Antimicrob Agents. 2005;25(1):31-7. doi: 10.1016/j.ijantimicag.2004.07.016. [PubMed: 15620823].
  • 6. Garvey MI, Piddock LJ. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother. 2008;52(5):1677-85. doi: 10.1128/AAC.01644-07. [PubMed: 18362193]. [PubMed Central: PMC2346654].
  • 7. Langsrud S, Sundheim G, Holck AL. Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. J Appl Microbiol. 2004;96(1):201-8. doi: 10.1046/j.1365-2672.2003.02140.x. [PubMed: 14678175].
  • 8. Pannek S, Higgins PG, Steinke P, Jonas D, Akova M, Bohnert JA, et al. Multidrug efflux inhibition in Acinetobacter baumannii: Comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-beta-naphthylamide. J Antimicrob Chemother. 2006;57(5):970-4. doi: 10.1093/jac/dkl081. [PubMed: 16531429].
  • 9. Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun. 2014;453(2):254-67. doi: 10.1016/j.bbrc.2014.05.090. [PubMed: 24878531].
  • 10. Handzlik J, Matys A, Kiec-Kononowicz K. Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics (Basel). 2013;2(1):28-45. doi: 10.3390/antibiotics2010028. [PubMed: 27029290]. [PubMed Central: PMC4790296].
  • 11. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: An update. Drugs. 2009;69(12):1555-623. doi: 10.2165/11317030-000000000-00000. [PubMed: 19678712]. [PubMed Central: PMC2847397].
  • 12. Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19(2):382-402. doi: 10.1128/CMR.19.2.382-402.2006. [PubMed: 16614254]. [PubMed Central: PMC1471989].
  • 13. Fernández Fuentes MÁ, Ortega Morente E, Abriouel H, Pérez Pulido R, Gálvez A. Antimicrobial resistance determinants in antibiotic and biocide-resistant Gram-negative bacteria from organic foods. Food Control. 2014;37:9-14. doi: 10.1016/j.foodcont.2013.08.041.
  • 14. Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect. 2004;10(1):12-26. doi: 10.1111/j.1469-0691.2004.00763.x.
  • 15. Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, et al. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms. 2016;4(1). doi: 10.3390/microorganisms4010014. [PubMed: 27681908]. [PubMed Central: PMC5029519].
  • 16. Lavilla Lerma L, Benomar N, Valenzuela AS, Casado Munoz Mdel C, Galvez A, Abriouel H. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol. 2014;44:249-57. doi: 10.1016/j.fm.2014.06.009. [PubMed: 25084670].
  • 17. Kugler R, Bouloussa O, Rondelez F. Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology. 2005;151(Pt 5):1341-8. doi: 10.1099/mic.0.27526-0. [PubMed: 15870444].
  • 18. Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. Permanent, non-leaching antibacterial surface--2: How high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28(32):4870-9. doi: 10.1016/j.biomaterials.2007.06.012. [PubMed: 17706762].
  • 19. Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A. 2001;98(11):5981-5. doi: 10.1073/pnas.111143098. [PubMed: 11353851]. [PubMed Central: PMC33409].
  • 20. Milovic NM, Wang J, Lewis K, Klibanov AM. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng. 2005;90(6):715-22. doi: 10.1002/bit.20454. [PubMed: 15803464].
  • 21. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules. 2004;5(3):877-82. doi: 10.1021/bm034352k. [PubMed: 15132676].
  • 22. Tiller JC, Lee SB, Lewis K, Klibanov AM. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79(4):465-71. doi: 10.1002/bit.10299. [PubMed: 12115410].
  • 23. Lin J, Tiller JC, Lee SB, Lewis K, Klibanov AM. Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains. Biotechnol Lett. 2002;24(10):801-5. doi: 10.1023/a:1015584423358.
  • 24. Cen L, Neoh KG, Kang ET. Surface functionalization technique for conferring antibacterial properties to polymeric and cellulosic surfaces. Langmuir. 2003;19(24):10295-303. doi: 10.1021/la035104c.
  • 25. Hu FX, Neoh KG, Cen L, Kang ET. Antibacterial and antifungal efficacy of surface functionalized polymeric beads in repeated applications. Biotechnol Bioeng. 2005;89(4):474-84. doi: 10.1002/bit.20384. [PubMed: 15609269].
  • 26. Lin J, Qiu S, Lewis K, Klibanov AM. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog. 2002;18(5):1082-6. doi: 10.1021/bp025597w. [PubMed: 12363361].
  • 27. Lin J, Qiu S, Lewis K, Klibanov AM. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng. 2003;83(2):168-72. doi: 10.1002/bit.10651. [PubMed: 12768622].
  • 28. Thome J, Holländer A, Jaeger W, Trick I, Oehr C. Ultrathin antibacterial polyammonium coatings on polymer surfaces. Surf Coat Technol. 2003;174-175:584-7. doi: 10.1016/s0257-8972(03)00703-5.
  • 29. Lin J, Murthy SK, Olsen BD, Gleason KK, Klibanov AM. Making thin polymeric materials, including fabrics, microbicidal and also water-repellent. Biotechnol Lett. 2003;25(19):1661-5. doi: 10.1023/A:1025613814588. [PubMed: 14584925].
  • 30. Ignatova M, Voccia S, Gilbert B, Markova N, Mercuri PS, Galleni M, et al. Synthesis of copolymer brushes endowed with adhesion to stainless steel surfaces and antibacterial properties by controlled nitroxide-mediated radical polymerization. Langmuir. 2004;20(24):10718-26. doi: 10.1021/la048347t. [PubMed: 15544407].
  • 31. Gilbert P, Moore LE. Cationic antiseptics: Diversity of action under a common epithet. J Appl Microbiol. 2005;99(4):703-15. doi: 10.1111/j.1365-2672.2005.02664.x. [PubMed: 16162221].
  • 32. Lenoir S, Pagnoulle C, Detrembleur C, Galleni M, Jérôme R. New antibacterial cationic surfactants prepared by atom transfer radical polymerization. J Polym Sci A Polym Chem. 2006;44(3):1214-24. doi: 10.1002/pola.21229.
  • 33. Cheng Z, Zhu X, Shi ZL, Neoh KG, Kang ET. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization of 4-vinylpyridine and quaternization. Surf Rev Lett. 2006;13(02n03):313-8. doi: 10.1142/s0218625x06008220.
  • 34. Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002;23(16):3359-68. doi: 10.1016/S0142-9612(02)00036-4. [PubMed: 12099278].
  • 35. Condell O, Sheridan A, Power KA, Bonilla-Santiago R, Sergeant K, Renaut J, et al. Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan. J Proteomics. 2012;75(14):4505-19. doi: 10.1016/j.jprot.2012.04.044. [PubMed: 22579747].
  • 36. Bayston R, Ashraf W, Smith T. Triclosan resistance in methicillin-resistant Staphylococcus aureus expressed as small colony variants: A novel mode of evasion of susceptibility to antiseptics. J Antimicrob Chemother. 2007;59(5):848-53. doi: 10.1093/jac/dkm031. [PubMed: 17337510].
  • 37. Randall LP, Cooles SW, Sayers AR, Woodward MJ. Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes. J Med Microbiol. 2001;50(10):919-24. doi: 10.1099/0022-1317-50-10-919. [PubMed: 11599743].
  • 38. Randall LP, Ridley AM, Cooles SW, Sharma M, Sayers AR, Pumbwe L, et al. Prevalence of multiple antibiotic resistance in 443 Campylobacter spp. isolated from humans and animals. J Antimicrob Chemother. 2003;52(3):507-10. doi: 10.1093/jac/dkg379. [PubMed: 12917241].
  • 39. Gilbert P, McBain AJ. Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev. 2003;16(2):189-208. doi: 10.1128/CMR.16.2.189-208.2003. [PubMed: 12692093]. [PubMed Central: PMC153147].
  • 40. McBain AJ, Gilbert P. Biocide tolerance and the harbingers of doom. Int Biodeter Biodegr. 2001;47(2):55-61. doi: 10.1016/s0964-8305(01)00037-3.
  • 41. Russell AD. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect Dis. 2003;3(12):794-803. [PubMed: 14652205].
  • 42. Gilbert P, McBain AJ, Bloomfield SF. Biocide abuse and antimicrobial resistance: Being clear about the issues. J Antimicrob Chemother. 2002;50(1):137-9. author reply 139-40. doi: 10.1093/jac/dkf071. [PubMed: 12096021].
  • 43. Schweizer HP. Triclosan: A widely used biocide and its link to antibiotics. FEMS Microbiol Lett. 2001;202(1):1-7. doi: 10.1111/j.1574-6968.2001.tb10772.x. [PubMed: 11506900].
  • 44. Tabak M, Scher K, Hartog E, Romling U, Matthews KR, Chikindas ML, et al. Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiol Lett. 2007;267(2):200-6. doi: 10.1111/j.1574-6968.2006.00547.x. [PubMed: 17156099].
  • 45. Agyepong N, Govinden U, Owusu-Ofori A, Essack SY. Multidrug-resistant Gram-negative bacterial infections in a teaching hospital in Ghana. Antimicrob Resist Infect Control. 2018;7:37. doi: 10.1186/s13756-018-0324-2. [PubMed: 29541448]. [PubMed Central: PMC5845144].
  • 46. Navidinia M, Goudarzi M, Rameshe SM, Farajollahi Z, Ebadi Asl P, Zaka Khosravi SZ, et al. Molecular characterization of resistance genes in MDR-ESKAPE pathogens. J Pure Appl Microbiol. 2017;11(2):779-2. doi: 10.22207/jpam.11.2.17.
  • 47. Navidinia M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. J Paramed Sci. 2016;7(3):43-57. doi: 10.22037/jps.v7i3.12584.
  • 48. Tabatabaei SR, Karimi A, Navidinia M, Fallah F, Fard AT, Rahbar M. A study on prevalence of vancomycin-resistant enterococci carriers admitted in a children’s hospital in Iran. Ann Biol Res. 2012;3(12):5441-5.
  • 49. Walkup GK, You Z, Ross PL, Allen EK, Daryaee F, Hale MR, et al. Translating slow-binding inhibition kinetics into cellular and in vivo effects. Nat Chem Biol. 2015;11(6):416-23. doi: 10.1038/nchembio.1796. [PubMed: 25894085]. [PubMed Central: PMC4536915].
  • 50. Lu H, Tonge PJ. Drug-target residence time: Critical information for lead optimization. Curr Opin Chem Biol. 2010;14(4):467-74. doi: 10.1016/j.cbpa.2010.06.176. [PubMed: 20663707]. [PubMed Central: PMC2918722].
  • 51. Yao J, Maxwell JB, Rock CO. Resistance to AFN-1252 arises from missense mutations in Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI). J Biol Chem. 2013;288(51):36261-71. doi: 10.1074/jbc.M113.512905. [PubMed: 24189061]. [PubMed Central: PMC3868742].
  • 52. Navidinia M, Goudarzi M. The antibacterial properties of aqueous and alcoholic extracts of punica granatum seeds on infectious diarrhea produced by bacteria. J Param Sci. 2017;8(4):6-13.
  • 53. Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7(12):887-94. doi: 10.1038/nrmicro2245. [PubMed: 19898491].
  • 54. Croswell A, Amir E, Teggatz P, Barman M, Salzman NH. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect Immun. 2009;77(7):2741-53. doi: 10.1128/IAI.00006-09. [PubMed: 19380465]. [PubMed Central: PMC2708550].
  • 55. Boursi B, Mamtani R, Haynes K, Yang YX. The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol. 2015;172(6):639-48. doi: 10.1530/EJE-14-1163. [PubMed: 25805893]. [PubMed Central: PMC4525475].
  • 56. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621-6. doi: 10.1038/nature11400. [PubMed: 22914093]. [PubMed Central: PMC3553221].
  • 57. Foster JA, McVey Neufeld KA. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305-12. doi: 10.1016/j.tins.2013.01.005. [PubMed: 23384445].
  • 58. Turna J, Grosman Kaplan K, Anglin R, Van Ameringen M. "What's bugging the gut in ocd?" A review of the gut microbiome in obsessive-compulsive disorder. Depress Anxiety. 2016;33(3):171-8. doi: 10.1002/da.22454. [PubMed: 26629974].
  • 59. Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun. 2012;80(1):62-73. doi: 10.1128/IAI.05496-11. [PubMed: 22006564]. [PubMed Central: PMC3255689].
  • 60. Yao J, Rock CO. Resistance mechanisms and the future of bacterial enoyl-acyl carrier protein reductase (FabI) antibiotics. Cold Spring Harb Perspect Med. 2016;6(3). a027045. doi: 10.1101/cshperspect.a027045. [PubMed: 26931811]. [PubMed Central: PMC4772078].
  • 61. Rezaei M, Chavoshzadeh Z, Haroni N, Armin S, Navidinia M, Mansouri M, et al. Colonization with methicillin resistant and methicillin sensitive staphylococcus aureus subtypes in patients with atopic dermatitis and its relationship with severity of eczema. Archives of Pediatric Infectious Diseases. 2013;1(2):53-6. doi: 10.5812/pedinfect.8969.
  • 62. Navidinia M, Fallah F, Lajevardi B, Shirdoost M, Jamali J. Epidemiology of methicillin-resistant staphylococcus aureus isolated from health care providers in mofid children hospital. Arch Pediatr Infect Dis. 2015;3(2). e16458. doi: 10.5812/pedinfect.16458.
  • 63. Fallah F, Karimi A, Goudarzi M, Shiva F, Navidinia M, Jahromi MH, et al. Determination of integron frequency by a polymerase chain reaction-restriction fragment length polymorphism method in multidrug-resistant Escherichia coli, which causes urinary tract infections. Microb Drug Resist. 2012;18(6):546-9. doi: 10.1089/mdr.2012.0073. [PubMed: 22816551].
  • 64. Navidinia M, Goudarzi M, Molaei Rameshe S, Farajollahi Z, Ebadi Asl P, Zaka Khosravi S, et al. Molecular Characterization of Resistance Genes in MDR-ESKAPE Pathogens. J Pure Appl Microbiol. 2017;11(2):779-92. doi: 10.22207/jpam.11.2.17.
  • 65. Navidinia M, Rashidan M, Rahimipour A, Goudarzi M. Capsular genotypes distribution and antibiotic resistance pattern of group B streptococcus (GBS) isolated from clinical samples, Tehran, Iran. J Pure Appl Microbiol. 2017;11(1):111-7. doi: 10.22207/jpam.11.1.15.
  • 66. Navidinia M, Armin S, Vosoghian S. Prevalence of blaOXA-1 and blaDHA-1 AmpC β-lactamase-producing and methicillin-resistant Staphylococcus aureus in Iran. Arch Pediatr Infect Dis. 2016;5(4). e36778. doi: 10.5812/pedinfect.36778.
  • 67. Navidinia M, Najar Peerayeh S, Fallah F, Bakhshi B, Adabian S, Alimehr S, et al. Distribution of the Pathogenicity Islands Markers (PAIs) in Uropathogenic E.coli Isolated from Children in Mofid Children Hospital. Arch Pediatr Infect Dis. 2013;1(2):75-9. doi: 10.5812/pedinfect.9083.
  • 68. Jafari M, Fallah F, Borhan RS, Navidinia M, Karimi A, Rafiei Tabatabaei S, et al. The first report of CMY, aac (6′)-Ib and 16S rRNA methylase genes among Pseudomonas aeruginosa isolates from Iran. Arch Pediatr Infect Dis. 2013;2(2):109-12. doi: 10.5812/pedinfect.11392.
  • 69. Karimisup A, Rahbar M, Fallahsup F, Navidiniasup M, Malekansup MA. Detection of integron elements and gene groups encoding ESBLs and their prevalence in Escherichia coli and Klebsiella isolated from urine samples by PCR method. Afr J Microbiol Res. 2012;6(8):1806-9. doi: 10.5897/ajmr11.1297.
  • 70. Vollan HS, Tannaes T, Vriend G, Bukholm G. In silico structure and sequence analysis of bacterial porins and specific diffusion channels for hydrophilic molecules: Conservation, multimericity and multifunctionality. Int J Mol Sci. 2016;17(4). doi: 10.3390/ijms17040599. [PubMed: 27110766]. [PubMed Central: PMC4849052].
  • 71. Denyer SP, Maillard JY. Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. Symp Ser Soc Appl Microbiol. 2002;(31):35S-45S. doi: 10.1046/j.1365-2672.92.5s1.19.x. [PubMed: 12481827].
  • 72. Fabrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotechnol. 2009;2(1):40-61. doi: 10.1111/j.1751-7915.2008.00063.x. [PubMed: 21261881]. [PubMed Central: PMC3815421].
  • 73. Nateghian A, Robinson J, Vosough P, Navidinia M, Malekan M, Mehrvar A, et al. Comparison of antimicrobial sensitivity to older and newer quinolones versus piperacillin-tazobactam, cefepime and meropenem in febrile patients with cancer in two referral pediatric centers in Tehran, Iran. Mediterr J Hematol Infect Dis. 2014;6(1). e2014045. doi: 10.4084/MJHID.2014.045. [PubMed: 25045453]. [PubMed Central: PMC4103504].
  • 74. Westh H, Zinn CS, Rosdahl VT. An international multicenter study of antimicrobial consumption and resistance in Staphylococcus aureus isolates from 15 hospitals in 14 countries. Microb Drug Resist. 2004;10(2):169-76. doi: 10.1089/1076629041310019. [PubMed: 15256033].
  • 75. Pulimood TB, Lalitha MK, Jesudason MV, Pandian R, Selwyn J, John TJ. The spectrum of antimicrobial resistance among methicillin resistant Staphylococcus aureus (MRSA) in a tertiary care centre in India. Indian J Med Res. 1996;103:212-5. [PubMed: 8935741].
  • 76. Ortega Morente E, Fernandez-Fuentes MA, Grande Burgos MJ, Abriouel H, Perez Pulido R, Galvez A. Biocide tolerance in bacteria. Int J Food Microbiol. 2013;162(1):13-25. doi: 10.1016/j.ijfoodmicro.2012.12.028. [PubMed: 23340387].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments