Archives of Clinical Infectious Diseases

Published by: Kowsar

Co-administration and Evaluation of Immune Responses of Three DNA Vaccines Encoding Immunogenic Antigens from Mycobacterium tuberculosis

Hadi Peeridogaheh 1 , Roghayeh Teimourpour 1 , Shahram Habibzadeh 2 , Jafar Mohammadshahi ORCID 2 , Aida Gholoobi 3 , Amir Teimourpour 4 and Zahra Meshkat 5 , *
Authors Information
1 Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
2 Departments of Infectious Diseases, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
3 Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
4 Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
5 Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
Article information
  • Archives of Clinical Infectious Diseases: 14 (3); e79496
  • Published Online: June 17, 2019
  • Article Type: Research Article
  • Received: May 21, 2018
  • Revised: April 10, 2019
  • Accepted: May 5, 2019
  • DOI: 10.5812/archcid.79496

To Cite: Peeridogaheh H, Teimourpour R , Habibzadeh S, Mohammadshahi J, Gholoobi A, et al. Co-administration and Evaluation of Immune Responses of Three DNA Vaccines Encoding Immunogenic Antigens from Mycobacterium tuberculosis, Arch Clin Infect Dis. Online ahead of Print ; 14(3):e79496. doi: 10.5812/archcid.79496.

Copyright © 2019, Archives of Clinical Infectious Diseases. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Billeskov R, Grandal MV, Poulsen C, Christensen JP, Winther N, Vingsbo-Lundberg C, et al. Difference in TB10.4 T-cell epitope recognition following immunization with recombinant TB10.4, BCG or infection with Mycobacterium tuberculosis. Eur J Immunol. 2010;40(5):1342-54. doi: 10.1002/eji.200939830. [PubMed: 20186878].
  • 2. World Health Organization. Global hepatitis report 2017. World Health Organization; 2017.
  • 3. Mandell G, Dolin R, Bennett J. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. 7 ed. Churchill Livingstone; 2009.
  • 4. Dietrich G, Viret JF, Hess J. Mycobacterium bovis BCG-based vaccines against tuberculosis: Novel developments. Vaccine. 2003;21(7-8):667-70. doi: 10.1016/S0264-410X(02)00577-7. [PubMed: 12531337].
  • 5. Teimourpour R, Sadeghian A, Meshkat Z, Esmaelizad M, Sankian M, Jabbari AR. Construction of a DNA vaccine encoding Mtb32C and HBHA genes of Mycobacterium tuberculosis. Jundishapur J Microbiol. 2015;8(8). e21556. doi: 10.5812/jjm.21556. [PubMed: 26464766]. [PubMed Central: PMC4600342].
  • 6. Baumann S, Nasser Eddine A, Kaufmann SH. Progress in tuberculosis vaccine development. Curr Opin Immunol. 2006;18(4):438-48. doi: 10.1016/j.coi.2006.05.016. [PubMed: 16777396].
  • 7. Ferraz JC, Stavropoulos E, Yang M, Coade S, Espitia C, Lowrie DB, et al. A heterologous DNA priming-Mycobacterium bovis BCG boosting immunization strategy using mycobacterial Hsp70, Hsp65, and Apa antigens improves protection against tuberculosis in mice. Infect Immun. 2004;72(12):6945-50. doi: 10.1128/IAI.72.12.6945-6950.2004. [PubMed: 15557616]. [PubMed Central: PMC529122].
  • 8. Brighenti S, Andersson J. Local immune responses in human tuberculosis: Learning from the site of infection. J Infect Dis. 2012;205 Suppl 2:S316-24. doi: 10.1093/infdis/jis043. [PubMed: 22448014].
  • 9. Meshkat Z, Teimourpour A, Rashidian S, Arzanlou M, Teimourpour R. Immunogenicity of a DNA vaccine encoding Ag85a-Tb10.4 antigens from mycobacterium tuberculosis. Iran J Immunol. 2016;13(4):289-95. [PubMed: 27999240].
  • 10. Parra M, Pickett T, Delogu G, Dheenadhayalan V, Debrie AS, Locht C, et al. The mycobacterial heparin-binding hemagglutinin is a protective antigen in the mouse aerosol challenge model of tuberculosis. Infect Immun. 2004;72(12):6799-805. doi: 10.1128/IAI.72.12.6799-6805.2004. [PubMed: 15557600]. [PubMed Central: PMC529156].
  • 11. Baghani A, Yousefi M, Safdari H, Teimourpour R, Gholoobi A, Meshkat Z. Designing and construction a DNA vaccine encoding the fusion fragment of cfp10 and Ag85A immunodominant genes of Mycobacterium tuberculosis. Arch Med Lab Sci. 2017;2(4).
  • 12. Meshkat Z, Soleimanjahi H, Mahmoudi M, Hassan ZM, Mirshahabi H, Meshkat M, et al. CTL responses to a DNA vaccine encoding E7 gene of human papillomavirus type 16 from an Iranian isolate. Iran J Immunol. 2008;5(2):82-91. [PubMed: 18523353].
  • 13. Teimourpour R, Peeridogaheh H, Teimourpour A, Arzanlou M, Meshkat Z. A study on the immune response induced by a DNA vaccine encoding Mtb32C-HBHA antigen of Mycobacterium tuberculosis. Iran J Basic Med Sci. 2017;20(10):1119-24. doi: 10.22038/IJBMS.2017.9445. [PubMed: 29147487]. [PubMed Central: PMC5673696].
  • 14. Teimourpour R, Meshkat Z, Teimourpour A, Meshkat M. Immune responses induced by a DNA vaccine encoding Mtb32C-HBHA antigens of Mycobacterium tuberculosis. Iran J Pharm Res. 2015.
  • 15. Peerdogaheh H, Teimourpour R, Moradi B, Yousefipour M, Gholoobi A, Baghani A, et al. Evaluation of immune responses to a DNA vaccine encoding Ag85a-Cfp10 antigen of Mycobacterium tuberculosis in an animal model. Jundishapur J Microbiol. 2018;12(1). e65689. doi: 10.5812/jjm.65689.
  • 16. Guerrero GG, Locht C. Recombinant HBHA boosting effect on BCG-induced immunity against Mycobacterium tuberculosis infection. Clin Dev Immunol. 2011;2011:730702. doi: 10.1155/2011/730702. [PubMed: 21647410]. [PubMed Central: PMC3102518].
  • 17. Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M, et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol. 2000;165(5):2850-8. doi: 10.4049/jimmunol.165.5.2850. [PubMed: 10946318].
  • 18. Mosavat A, Soleimanpour S, Farsiani H, Sadeghian H, Ghazvini K, Sankian M, et al. Fused Mycobacterium tuberculosis multi-stage immunogens with an Fc-delivery system as a promising approach for the development of a tuberculosis vaccine. Infect Genet Evol. 2016;39:163-72. doi: 10.1016/j.meegid.2016.01.027. [PubMed: 26835592].
  • 19. Dracopoli NC, Haines JL, Korf BR. Current protocols in human genetics. 1994.
  • 20. Barker LF, Brennan MJ, Rosenstein PK, Sadoff JC. Tuberculosis vaccine research: The impact of immunology. Curr Opin Immunol. 2009;21(3):331-8. doi: 10.1016/j.coi.2009.05.017. [PubMed: 19505813].
  • 21. Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PE, et al. Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials. Clin Infect Dis. 2014;58(4):470-80. doi: 10.1093/cid/cit790. [PubMed: 24336911].
  • 22. Buddle BM, Vordermeier HM, Chambers MA, de Klerk-Lorist LM. Efficacy and safety of BCG vaccine for control of tuberculosis in domestic livestock and wildlife. Front Vet Sci. 2018;5:259. doi: 10.3389/fvets.2018.00259. [PubMed: 30417002]. [PubMed Central: PMC6214331].
  • 23. Barreto ML, Pereira SM, Ferreira AA. BCG vaccine: Efficacy and indications for vaccination and revaccination. J Pediatr (Rio J). 2006;82(3 Suppl):S45-54. doi: 10.2223/JPED.1499. [PubMed: 16826312].
  • 24. Ottenhoff TH, Kaufmann SH. Vaccines against tuberculosis: Where are we and where do we need to go? PLoS Pathog. 2012;8(5). e1002607. doi: 10.1371/journal.ppat.1002607. [PubMed: 22589713]. [PubMed Central: PMC3349743].
  • 25. Delogu G, Fadda G. The quest for a new vaccine against tuberculosis. J Infect Dev Ctries. 2009;3(1):5-15. [PubMed: 19749443].
  • 26. Bruffaerts N, Huygen K, Romano M. DNA vaccines against tuberculosis. Expert Opin Biol Ther. 2014;14(12):1801-13. doi: 10.1517/14712598.2014.951630. [PubMed: 25145964].
  • 27. Barnes PF, Samten B, Shams H, Vankayalapatib R. Progress in understanding the human immune responses to Mycobacterium tuberculosis. Tuberculosis (Edinb). 2009;89 Suppl 1:S5-9. doi: 10.1016/S1472-9792(09)70004-6. [PubMed: 20006306].
  • 28. Parida SK, Kaufmann SH. Novel tuberculosis vaccines on the horizon. Curr Opin Immunol. 2010;22(3):374-84. doi: 10.1016/j.coi.2010.04.006. [PubMed: 20471231].
  • 29. Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM. In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol. 2014;12(4):289-99. doi: 10.1038/nrmicro3230. [PubMed: 24590243]. [PubMed Central: PMC4085047].
  • 30. Jankovic D, Kugler DG, Sher A. IL-10 production by CD4+ effector T cells: A mechanism for self-regulation. Mucosal Immunol. 2010;3(3):239-46. doi: 10.1038/mi.2010.8. [PubMed: 20200511]. [PubMed Central: PMC4105209].
  • 31. Trinchieri G. Interleukin-10 production by effector T cells: Th1 cells show self control. J Exp Med. 2007;204(2):239-43. doi: 10.1084/jem.20070104. [PubMed: 17296790]. [PubMed Central: PMC2118719].
  • 32. Redford PS, Murray PJ, O'Garra A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol. 2011;4(3):261-70. doi: 10.1038/mi.2011.7. [PubMed: 21451501].
  • 33. Ye Z, Huang H, Hao S, Xu S, Yu H, Van Den Hurk S, et al. IL-10 has a distinct immunoregulatory effect on naive and active T cell subsets. J Interferon Cytokine Res. 2007;27(12):1031-8. doi: 10.1089/jir.2006.0144. [PubMed: 18184044].
  • 34. Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol. 2015;37(3):239-49. doi: 10.1007/s00281-015-0490-8. [PubMed: 25917388]. [PubMed Central: PMC4439333].
  • 35. Lyadova IV, Panteleev AV. Th1 and Th17 cells in tuberculosis: Protection, pathology, and biomarkers. Mediators Inflamm. 2015;2015:854507. doi: 10.1155/2015/854507. [PubMed: 26640327]. [PubMed Central: PMC4657112].
  • 36. Torrado E, Cooper AM. IL-17 and Th17 cells in tuberculosis. Cytokine Growth Factor Rev. 2010;21(6):455-62. doi: 10.1016/j.cytogfr.2010.10.004. [PubMed: 21075039]. [PubMed Central: PMC3032416].
  • 37. Aagaard C, Hoang TT, Izzo A, Billeskov R, Troudt J, Arnett K, et al. Protection and polyfunctional T cells induced by Ag85B-TB10.4/IC31 against Mycobacterium tuberculosis is highly dependent on the antigen dose. PLoS One. 2009;4(6). e5930. doi: 10.1371/journal.pone.0005930. [PubMed: 19529771]. [PubMed Central: PMC2691953].
  • 38. McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL, Cox JS, et al. A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog. 2007;3(8). e105. doi: 10.1371/journal.ppat.0030105. [PubMed: 17676952]. [PubMed Central: PMC1937011].
  • 39. Guerrero GG, Debrie AS, Locht C. Boosting with mycobacterial heparin-binding haemagglutinin enhances protection of Mycobacterium bovis BCG-vaccinated newborn mice against M. tuberculosis. Vaccine. 2010;28(27):4340-7. doi: 10.1016/j.vaccine.2010.04.062. [PubMed: 20447476].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments